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1. Introduction and main results

In this paper we consider the least-square regularized learning algorithm for regression with non-iid sampling.
Let (X,d) be a compact metric space (input space). Each x € X is assigned a probability measure p, = p(-|x) on Y := R. We
define our target function for learning by

fo(x) = /y ydpy), xeX. (1.1)

In the setting of regression in learning theory, {p,} are conditional distributions of a probability measure onZ := X x Y and f, is
the regression function.

Our learning algorithm is a kernel method. We say that K : X x X — R is a Mercer kernel if it is continuous, symmetric and
positive semidefinite in the sense that the matrix (K(x,v,xj))g j=1 is positive semidefinite for any {x1,...,%;} C X. The reproducing
kernel Hilbert space (RKHS) s#x associated with the kernel K is defined to be the completion of the linear span of the set of
functions {Kx := K(x,-) : x € X} with the inner product (., )k given by (Ky, Ky)x = K(x,y).

Let x = sup,cx+/K(x,x). Then the reproducing property means that

K,/ ik =f(x), VxeX, feHk. (1.2)
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It follows that

FEI<Iflicpy Sxlifllg,. fe Ak xeX. (1.3)

The least-square regularized regression algorithm associated with the Mercer kernel K and a sample z := {z;}]! ; ={(x;, ¥} €
Z™ is defined as

fo,. = arg min Z(f(x, AR (1.4)

where 4> 0is a constant called the regularization parameter. It is usually chosen as 1= A(m) to depend on m and lim;_, . A(m)=0.

Throughout the paper, we assume that for some M >0, p, is supported on [—M, M]. That means |y| <M almost surely and
hence |f,(x)| <M.

The aim of this paper is to study the learning performance of (1.4) with non-iid sampling. The model we take throughout
the paper is from Smale and Zhou (2009) based on a sequence of probability measures {p{)} on Z, such that the conditional
distribution of p(!) at x equals p, for every x € X. The probability distribution of each pair (x;,y;) is p(®.

In the special case of iid sampling, the sequence {p(?} is identical. There have been in the literature satisfactory learning rates
such as Caponetto and De Vito (2007) and Wu et al. (2006) for capacity dependent learning rates, and Bousquet and Elisseeff
(2002), De Vito et al. (2005), Smale and Zhou (2007) and Zhang (2003) for capacity independent learning rates. For a setting
(Smale and Zhou, 2009) of non-identical distributions, the sampling points {x;} are drawn from different marginal distributions,
and error analysis was done in Smale and Zhou (2009) under the assumption of independence. Shannon sampling (Smale and
Zhou, 2004) and randomized sampling (Zhou and Zhou, to appear) are also examples of this setting. For dependent sampling
such as weakly dependent sampling, there is an increasing literature (Modha and Masry, 1996; Steinwart et al., 2008; Sun and
W, to appear; Xu and Chen, 2008).

The main purpose of the paper is to study learning ability of the least-square regularized regression algorithm (1.4) with
non-iid sampling. Our setting does not require independence or identity, since either of them is a rather restrictive assumption
in some real data analysis. The learning ability of the algorithm will be measured by learning rates.

Relaxing the independence condition, we assume the sampling sequence to be a stationary process satisfying the following
mixing condition.

Definition 1. A stationary process {z;} is said to be ¢-mixing or strongly mixing if

oj) = sup [IP(ANB)— P(A)P(B)] - 0 (1.5)
AHS BN k>1

as j — oo, where *R’l‘ and *R,ﬁij denote the g-algebra of events generated by the random variables {z; : 1<i<k}and {z; : i>k + ]},
respectively. It is said to satisfy an exponential strongly mixing condition, if for some positive constants a, b and c, we have

a(i)gaexp(—cib), vi>1. (1.6)
It satisfies a polynomial strongly mixing condition, if for some positive constants a and b, we have
oi)<ai’, Vi1, (1.7)

While the setting of dependent sampling (with identical distribution) has been intensively studied in the literature (e.g.
Steinwart et al., 2008), the non-identical setting is less understood. The main difficulty lies in finding rules for non-identical
distributions under suitable conditions. In this paper we keep the standard mixing condition for dependent sampling (Modha
and Masry, 1996), and use ideas from Smale and Zhou (2009) to improve the understanding of non-identical setting.

Let /’x be the marginal distribution of p() on X. To replace the identity of the sampling sequence {p()}, we assume as in Smale

and Zhou (2009) that the marginal distribution {pgp} converges to a probability measure py in the dual (C5(X))* of a Holder space.
Recall the Holder space C5(X) with 0<{s <1, which consists of all continuous functions on X with the following norm finite:

1) = FI

S

Iflicsixy = Wflloo + flesxy - Where [flesexy := sup
®0 ® 0T Cvex (dxy)

Definition 2. Let 0 <<s<1. We say that the sequence {pgé)} converges to py exponentially in (C3(x))*, if there exist C >0 and
0 <a <1 such that

I 0% — px ooy <Cof, VieN. (1.8)
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Remark 1. Condition (1.8) is equivalent to

\ /X fx)dp) - fx FX)dpy| <Coi(flloo + flesx). VF € C(X), e N. (1.9)

The exponential convergence of {pg)} in (C(X))*, the space of signed finite measures with s = 0, implies (1.8) for any 0 <s< 1. So

the setting with condition (1.8) is more general than the exponential convergence of pﬁ) as measures.

Definition 3. For a probability measure u, we define an integral operator Ly, : Lfl — Lﬁ as

Ll = [ Kuf () dio),
It is a compact operator and its power L;c i is well-defined. The function f), is said to satisfy the regularity condition (of order r) if

fo=Lk,,(8) for some g, e L7 (X). (1.10)
Let 0<s< 1 be a fixed Holder exponent used in the exponential convergence of measures.

Definition 4. We say that the Mercer kernel K satisfies the kernel condition (of order s) if for some constant rys > 0, K € C5(X x X)
and for all uq,uy,v1,v3 € X

IK(u1,v1) — K(ua, v1) = K(uq, v2) + K(uz, v2)| < as(d(uq, u2)(d(vy, v2)). (1.11)
Let us state our main results on the error analysis which will be proved in Section 4.

Theorem 1. Assume that {z;} satisfies the o-mixing condition (1.7) with b> 0 and {pgp} converges exponentially in (C5(X))* with
0 <s<1 satisfying (1.8). Suppose K satisfies (1.11) and f, has the regularity property (1.10) with % <r< % If b>1, by taking

) =m~b(2br+1) e have
Ezr...ozm (15,5 — foll) < C/log mm=br=1/2)/2br+1), (1.12)
where C is a constant independent of m. If0 < b < 1, by taking A = m~Y@+D we have

Ezpve.ozm (I, — foll) < Cm b= 1/202r D), (1.13)

Learning rates (1.12) and (1.13) measure the error in the || - | x-metric which was first studied in Smale and Zhou (2007). The
learning rates given there in the i.i.d. setting are of order (/(m—("=1/2/(2r+1)) under assumption (1.10). When the index b in mixing
condition (1.7) tends to infinity, the power for our learning rates in (1.12) approaches (r — 1/2)/2r which is even better than the
power (r — 1/2)/(2r + 1) in Smale and Zhou (2007). In fact, the power for the learning rates in Smale and Zhou (2007) can be
improved to (r — 1/2)/2r, as explained in the remark after the proof of Theorem 1 in Section 4. With this improvement, the power
in (1.12) under mixing condition (1.7) with b > 0 is consistent to that in the i.i.d. setting by taking b — oc.

Learning rates for the regression algorithm (1.4) are usually measured in the | - HL?) -metric (Caponetto and De Vito, 2007; Wu

et al., 2006; Zhang, 2003). In our non-iid setting, the learning rates in the | - ||,_;7 —metXric can be stated as follows.
X

Theorem 2. Under the assumption of Theorem 1, if b > 1, by taking A = m~1/2, we have
Eovenin (s —Fyli ) <Clogmim=14. (114)

Learning rate (1.14) does not depend on r and b: regularity property (1.10) with any r > % for f, ensures enough decay of the
approximation error in the || - || Z -metric, see (4.2). This is essentially different from the analysis in the | - |g-metric. Except the
X

logarithmic term, the power }1 for our learning rate in (1.14) is the same as that in the i.i.d. setting given in Smale and Zhou (2007)
under assumption (1.10) with r = %

Remark 2. Learning rates (1.12)-(1.14) are given in expectation because our estimates depend on an inequality in expectation
(Lemma 1 below, cited from Dehling and Philipp, 1982) to deal with dependency. To our best knowledge, due to the dependency,
there is no exponential probability inequality in the literature which can be applied to our non-iid setting with mixing conditions.
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It would be interesting to get confidence-based learning rates (of type m=?log 1/6 with confidence 1 — §), using exponential
probability inequalities for dependent random variables.

2. Bounding the drift error and approximation error
We estimate the error between f, ; and f, by the technique of integral operators (Smale and Zhou, 2007). Learning rates (1.12)

and (1.13) will be derived by taking the choice of 1 as stated in Theorem 1 from more general error bound (4.1) in Theorem 4.
Write y = (1/m)21’-’;1p§é). A noise-free limit of f, ; is given by

= arg min { [(F00 - f,0Pdua) + 21112 1)
We shall estimate the error f, ; — f, by decomposing it into three parts:
fa = fo =g = o3 + Frp = Frp} + Frpy = Folke (22)
2.1. Approximation error

The last term of (2.2) is incurred by the regularization parameter and is called the approximation error (Zhou, 2002). It does
not depend on the sample. By Proposition 3 in Smale and Zhou (2009), we have the following proposition.

Proposition 1. If f, satisfies condition (1.10) with % <r< % then for any /. > 0 we have
Frp —Fole < 1oz, 42, (23)

2.2. Drift error
The middle term of (2.2) is caused by the difference of the marginal distribution {pgp} from the limit py. It is called the drift
error and can be stated as follows.

Proposition 2. Let the marginal distribution sequence {pg(i)} satisfy exponential convergence condition (1.8) with 0 <s < 1.If f, satisfies
regularity condition (1.10) with % <r< % and K satisfies kernel condition (1.11), then

My 302
m

Wy = Frpyllk < gl . (2.4)

where My = C(o/(1 — a))(x + sz)\/KZ + 2|K]|es(xxx) + K2s-

Proof. When condition (1.11) is valid, it was proved in Zhou (2003) that #k is included in C°(X) with the inclusion bounded as

Iflcspey < (1 + 12s)If i, Vf € H k. (2.5)

Proposition 1 in Smale and Zhou (2009) tells us that

C
e =L Ik < 1 = Px 0y Wy, = Follcsco (2.6)

where Cy := \/KZ + 2|K|es(xxx) + K25 is a constant depending only on K. Then

Ck

Wz = Frpy Ik < - 2,05 —Follcsix)

1 i)
1
m 2 Px ~Px
i=1

(CX)

G 1 & .
< K5 160 = pxlicny W, — frllom
i=1
G 1 & .
< TK m > Col(re + k2s)Ilf p, — F
i=1
Ck C «
< Fo e k2l —folls
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where || fA,px — follk is the approximation error. Due to Proposition 1,

CK C «
e = Frpy e < 5 o g O w202 gyl

CxC

o4
T T k2s)
m

_ Ar—3/2

8o ll2 -
gp Lﬂx

This proves the proposition. [J
3. Estimating the sample error

To deal with the dependence, we need the following probability inequality proved by Dehling and Philipp (1982) (the inequality
for real-valued random variables is due to Davydov and Yu, 1970).

Lemma 1. Let ¢ and n be random variables with values in a separable Hilbert space # measurable o-field # and 9, respectively. If
u,v,t>1 (possibly +oo) withu=! + v=1 +t1 =1, then

IE(E, ) — (EE En) < 150Y(F, 9 ENulinllv, (3.1)

where «(F, %) = supac 7 ses|P(A N\ B) — PA)P(B)| and ||¢llu = (EIE]1%, ).

Proposition 3. Let the random sequence {z;} satisfy the a-mixing condition, and the marginal distribution sequence { pgg)} satisfy the
exponential convergence condition (1.8). Let 6 > 0. If f, € #’k, then

-1 -\\/(240
Wos =l < WU G sl )V u””‘”M (3.2)
Zm Uz, — J2,ullK «/F pIlIK plig \/WJL&/(MZB) .

Proof. Denote x = {x;}{" . Recall the operator SISx : Hx — Hx given by SISxf = 31", f(x;)Ky. By an expression obtained in
Theorem 1 of Smale and Zhou (2005, 2007),

1 m
o= Fin =y S5Se+ 1) [%Z(yi—fm(x,-nxx,.—LK,,t(fp—f;v,,,) . 33)

i=1

Denote the random variable ¢ with values in #'x given by &(z)=(y - f;, «(2))Kx. Then

Vi|
Wi =il <

where

Sl—‘

> &z) — Liulfo — fu)
i1

K

Taking inner products in 2, we have

Ezpvovzn(A2) <D + B = 205 + L u(fy — 3,12

m2 Z Ez, (Vi — f7,0(0))*K (%3, %)) + - Z Ez7(S(z:), Sz
i#j

- % By — Fu )Ly — £,000) + Wi uFp — £,)1%-

i=1

Since \|L,l</_,2,f||1< = IlfllLﬁ for f € I2, we know that

I3 = f (Fp(X) = F 0Nk ufp = £, )00 dpa = ILLAE = Fily, = Wl = £

Next we estimate the crucial part I, involving the weak dependence. When i#j, we apply Lemma 1 to £ = &(z;) and y = &(z;)
withu=v=2+9,t=(2 + )/ and see

Ezyiy (82, €@k — (B &zi). By, E(zhie < 150l — 1PN 2024614226 (3.5)



3584 Z.-W. Pan, Q.-W. Xiao / Journal of Statistical Planning and Inference 139 (2009) 3579 - 3587
But [, &(z) = fx(fo(x) — f;,,(x))Kxdpy) and
1€ZEs = [ 16 AP0 = [ [0~ 00 K020

< M+ 11fy ylloo) 210 fx (Fo(%) = F1,())*K(x,x) dpS). (3.6)

It follows that

<oy [ 000 = £ GO ) = Kk, W) ) dp P w)
i#]

Z(a — JNYVCERIEM 4 If; o))
i#]

1/(2+9)

. 1/(2+9) .
x { [ Gt —f;,,ﬂ(x»ZK(x.x)dp;)} { [Gt —f;v,,l(X))zK(X.X)dp%)}

The last term on the right side is bounded by

/(2+46) . .
15 M 4 f, o) 20 { [G f;ﬂx))zk(xx)dp“)} S (i - iy

J#i
1
< 132100 4 1, 1700 [0 0Kk 2 S D)), (3.7)
ST Julloo P o ,X)A[ Z .
1=1
Taking f = f, in definition (2.1) of f; ,,, we know that
/(f) u dﬂ+/b|\fﬂ/¢||K</L|lfp||l< (3.8)
It yields IIfy,, ik < Ilfpllx and
[ 600 = 5 P8 20 A < 2 1 (3.9)
Hence the last term for bounding I is at most
30 ; 5 5) e 5
FKZ&/(ZJr())(IVI + K||fp”1()§/(2+())(’€2)v”fp”12<)2/(2+()) Z(O((l))é/(2+(>)
I=1
2/2+0) m-1 o
<30K2(M + wlfy i)V PO I = 3 (D)7, (3.10)
I=1

The first term for bounding I, equals
Liulfy = f; | G0 = £, Eow) = £, (W)KCe W) il (x) dpi ()
H K.ulJp —Ju HK 2 P ),u P A ) ,DX px y
which is bounded by ||Lg ,.(f, —f;ﬂ,,)l\,z( according to the Mercer kernel property. Also, we see that

m2 Z/UP X) f/L y(x))ZK(x X) dp(')

K221fp 112
LK

/U/’ fAﬂ ( ,x)dpg

Combining all the estimates for Iy, I3, I3, we know that

2y K2 IR 2 §12e0) p (42e) ATE T k)
Ez....z2n(47)< —m + 30x“(M + |lfpllk) Il —m Z(“(l)) . (3.11)
=

This proves the desired bound. [J
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When the error is measured in the || - |\L?) -metric, it was shown in Caponetto and De Vito (2007) and Smale and Zhou (2007)
X

that bounds for the sample error can be improved by means of the norm relationship ||L,1(/if||1< = ”ﬂllﬁ‘ In our non-iid setting, we
have the following estimate for the sample error.

Proposition 4. Let the random sequence {z;} satisfy the a-mixing condition, and the marginal distribution sequence { pgé)} satisfy the
exponential convergence condition (1.8). Let 6 > 0.If f, € # 'k, then

1/4
ml/
Ez, - <1+ = 1+30§:a ))X/(2+0)
”fz) f)#”LZ } m[ . 1(

1, 0/249)
Klfpllx 5/(4+28) 1 ¢ 12/(2+3) > (i)
X ( «/ﬁ + GK(IVI+ K”fp ”K) ”f ” w .

Proof. Applying the relation ||L,1</if|\1< = ”f”Lf, to the function f =f ; — f; , in (3.3) we know that E;,....z, {Ilf,1 *fﬂ-,u”L}, } equals
K X

1 11 Z
[Ezl,...,zm L}{i(aS,T(Sx + ;J) l E Z(Yi _f).,,u(xi))KXi - LK,,u(fp _fi,y)]
i=1 K
T\ (1 R
< [Ezl,...,zm (ESXSX) (ES"S" + /J) a Z(yi _f).,,u(xi))KXi - LK,;LOC/I _fi,,u)
i=1 K
2 (Tac\" 1 (1ae ) ]1 e
+ [Ezl,....zm (LK,,‘ - (Esxsx) ] (Esxsx + /J> E Z(Yi —fi,u(xi))Kx,- - LK,,u(fp —f}.,ﬂ)
i=1 K

This in connection with the inequality \|L,l(/i — ((1/m)SLs) 2| < Lk, — (1/m)SESx||'/? given as Theorem 2.1 in Sun and Wu
(2009) implies

1/2

1
Ez...ozm Uz —f},,,uHL?;X IS =204+ Bz 2

1
ﬂ LK,;L - ES;SX

1 m
(gustsc+ 1) [ : D 0= ol = Ll —f;v,,,)}

1 1 )2
gﬁ[Ezl,...,zmA'i‘ E.oozm Ez....zm IA .

Besides bound (3.11) for ...z, 4, we need to estimate the operator norm ||L,, — (1/m)SISx|l. Denote {(x) := Ky(-,Kx)
which is a rank one operator on #’k for x € X. Consider { to be a random variable with values in HS(# ), the Hilbert space of
Hilbert-Schmidt operates on #, with inner product (A, B)ys =Tr(BTA). Here Tr denotes the trace of a (trace-class) linear operator.
The space HS(# ) is a subspace of the space of bounded linear operator on .k, denoted as (L(.#’k), || - ||), with the norm relations

K

1
Ll(,u - Esisx .

IAI < |AllHs,  I1ABllks < IIAllHslIBII. (3.12)

As in the proof of Proposition 3, we have

1 2

1
2 || L — ES,CSx

2
[Ez1,... g [Ezl,...,zm LK,,u - ES;SX

HS

Z [Ezl X,) C(Xl) Hs + m_ Z [EZI Zj é(xl) é/(xj HS — Z [EZI Q(Xl) LKH HS T+ ”LKHHHS

i=1 i#j 11

4 .
< = Z —in 5/(2+())HC(XI)”2+5”C(X])”2+(S <— (1 +30 Z o/ 2+o)) .
I=1

i#]
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)

Therefore,

1 7 1
[Ezl,...,zm{”fz,/l _fi'“”"f)x}g ﬁ [Ez1,...,zmA2 (] + ﬁ\/[Ezl,...,zm

can be bounded as stated. This proves Proposition 4. [

1
Ly — ES)T(Sx

4. Deriving learning rates

Combining the bounds in Propositions 1-3, we get the following estimate for the error f, , — f, in the J#x-metric.

Theorem 3. Assume that {z;} satisfies a-mixing condition (1.7) and {pgé)} satisfies exponential convergence (1.8) with 0 <s< 1. IfK

satisfies kernel condition (1.11) and f, has regularity property (1.10) for some % <r< 2, then for any ¢ > 0, we have

AV ) e

anlfp = foll) ST A2 2 4

- 41
mAi m + MAé/ 4+20) ! ( )

where C* = I8l +Miligpllis -+ Klfylc + BKIf, 172U M + ellf, 1) 4+29),

In the same way, the following estimate for the error f, ; — f, in the L%X-metric is a consequence of Propositions 2 and 4 and a
trivial bound for the approximation error when f, € #:

(17 —fpnfz + Afop IE <A IR ¥A>0. (4.2)
X

Theorem 4. Assume that {z;} satisfies a-mixing condition (1.7) and {pgé)} satisfies exponential convergence (1.8) with 0 <s<1.IfK
satisfies kernel condition (1.11) and f, has regularity property (1.10) for some % <r< % then for any ¢ > 0, we have

[Ez1 ...,zm(”fz,i _fp“]_Z )
Px

~ r=1/2 m—1¢,319/(2+0) 1/4 14 (m-1 /4
<ol A [ Yisi ((> (4)) LG b S FTCID
ma f /) l4+20) vmi  Vmi\“

where C* = Ify ik + 1M1 Igpll3 -+ Kl + 65U, 17 FHOM + el )Y 4201 4 3k¢).

We are in a position to prove Theorem 1 on learning rates in the K-metric stated in the Introduction.

Proof of Theorem 1. When 1< b < oo, we take § =2/(b— 1) > 0. Then Z}Z}l(a(i))‘;/(”é) <YM ai~' <alogm. By Theorem 4, we
have

12 N 1 f«/logm 43)
mA /— Jma2b .

Thus when 22 = 1/v/mi2 "%, that is, 2 = m~/(2br+1) we have
zn(f = Follk) < (3 + Va)C*y/log mm~Yr=1/2)/2br+1), (4.4)

This proves (1.12). ‘
When 0 < b < 1, we take § = oco. Then ngl (oc(i))"/(”‘s) = Z{Z] a(i)<(a/(1 = b))m'~?, and we conclude from Theorem 4 that

12 / m“ -by2
&l Wil ) (4.5)

(“sz_f;)”K) c m/«b \/7 \/_/J/z

ezl = foll) T A2 4

When A =m=Y@r+1) this yields

a ~
wenzm Uz = follK) < (3 + /m> Crm—blr=1/2)/2r+1), (4.6)

This proves Theorem 1. [J
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Remark 3. In the above proof, we make full use of assumption (1.10) with % <r< % and apply bound (2.3) from Proposition 1
for the approximation error. In Smale and Zhou (2007) the estimate for the sample error |fy ; —f; ,, llx (stated as Theorem 1 there)
was provided for general measures without special condition (1.10). Hence the learning rates there were not optimal when f,
satisfies (1.10) with % <r< % If one uses (2.3) in this special case, the learning rate for ||f, ; — f,lx in Smale and Zhou (2007) can
be improved to ¢(m=("=1/2/2r) which would be consistent to our learning rate (1.12).

Another mixing condition is induced by ¢-mixing coefficients as follows.

Definition 5. A stationary process {z;} is said to be ¢-mixing if
¢() = sup |[P(A|B) — P(A)] - 0 (asj — oo). (4.7)

AR} B k>1

In this case, the following probability inequality is due to Billingsley (1968) whose proof is also valid for #-valued random
variables.

Lemma 2. Let £ and 1 be random variables with values in a separable Hilbert space # measurable # and 9, respectively. If p,q > 1
satisfy p~1 +q~1 =1, then

E(E,n) — (EE EI<20"P(Z, 9)ElpInllg, (4.8)
where ¢(F,%) = suppc 7 pey|P(AIB) — P(A)|.

With this inequality, we can do the error analysis as follows.

Theorem 5. Assume that {z;} satisfies the ¢p-mixing condition (4.7) and {pgg)} satisfies exponential convergence (1.8) with0 <s<1.1If
K satisfies kernel condition (1.11) and f, has regularity property (1.10) for some % <r< % then for any 6 > 0, we have

TV S ((i))

_ <"‘* r=1/2
Eeyvvon(Wfz = folli)SC Y A7 4 = M R FrICs)

(4.9)

where C* = gl + Mol +KIfplic + 2611f, 17 HOM + kllf, 1) V429,

In particular, if {¢(j)} decays as ¢(j) = O(j?) for some b > 0, then we derive easily the following learning rates by taking
suitable choices of 4.

Corollary 1. Under the condition of Theorem 5, if ¢(j) < aj’b forsome b>1, then

Ezy,eeoizn (I — o) < Cy/log mm=Pr=V2/@HD) by taking 4 = m-P/(2brD),

where C is a constant independent of m. If RS aj’b forsome 0 <b <1, then

Ezp,..zm (W — follic) S CmPU=12/2r+1) by taking A = m=b/2r+D),
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